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On Calculating with Lower Order

Chebyshev Splines

Mladen Rogina and Tina Bosner

Abstract. We develop a technique to calculate with Chebyshev Splines
of orders 3 and 4, based on the known derivative formula for Chebyshev
splines and an Oslo type algorithm. We assume that splines in the reduced
system are simple enough to calculate. Local bases of Chebyshev splines of
order 3 and 4 can thus be evaluated as positive linear combinations of less
smooth Chebyshev B-splines. The coefficients in such linear combinations
are discrete Chebyshev splines, normalized so as to make a partition of
unity. There are a number of interesting special cases, such as Foley's
v-splines, Chebyshev polynomial splines (q-splines), and splines in tension
which can be calculated stably by such formulm.

§1. Introduction and Preliminaries

It is an important fact in the univariate polynomial spline theory that splines
can be represented as linear combinations of compactly supported basis func-
tions, which we can calculate in various ways by stable and fast numerical algo-
rithms. This can be extended to some other well-known spaces of splines, such
as trigonometric and hyperbolic splines, where nice three-term recurrences of
de Boor-Cox type exist; this also applies to a less interesting case of Chebyshev
splines with equal weights. These issues have been discussed in [12], where we
can also find a negative result concerning the existence of such three-term re-
currence relations in general. Polynomials, however, form an algebra, while in
other cases multiplicative properties are replaced by other algebraic formulae,
such as addition formulae for trigonometric/hyperbolic functions or similar
identities.

We shall say that an interval [a, b] is measurable with respect to the
measure vector do := (da 2, .. danf)w if it is measurable with respect to the
positive Lebesgue-Stieltjes measures dai, i = 2,... n. Then for x E [a, b] we
can define generalized powers (Chebyshev system) {1, u2 ,.. un}:

U2(X) = &d2(t 2);... ; U(x) = &d2(t 2) ... dcr(tn). (1)
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If all of the measures dai are dominated by the Lebesgue measure, then they
possess densities 1, i = 2,... n; if pi are smooth, i.e.,l := di E Cn-+1l,
then {1, u 2,... Un} is called an Extended Complete Chebyshev System (ECC-
system), referred to as ECT system in [11]). Further, we shall assume that such
an integral representation has been found, and the measures for the Chebyshev
space determined in such a way that we know the generalized powers explicitly.
This may not always be easy, and the choice of measures may not be unique.
It is known that Chebyshev B-splines that make a partition of unity exist
in this general case, and even that abstract recurrences [5,1] resembling the
polynomial ones exist. Almost nothing can be said about their numerical
stability, at least not until we employ a special measure vector, whence the
abstract construction gets difficult.

Recently, other techniques based on blossoming have been found for the
Chebyshev splines [6], which are more promising so far as evaluation and
numerical stability is involved. In case of polynomial weights, one obtains
Chebyshev polynomial splines [7], though here again the underlying algebraic
properties of polynomials are implicitly used.

In Section 2 we give some formula for Chebyshev systems of orders 3 and
4 which express locally supported splines (being piecewise in these spaces)
as positive linear combinations of less smooth splines in the same space. We
will see that the coefficients are related to integrals of splines in the reduced
system, which is defined to be a Chebyshev system like (1) corresponding to
the reduced measure vector, that is, for each 6 C [a, b]

do(')(6) (doi+2 (6),... , do'n(6))T C ]n--(i+l), i = 1,....n - 2.

If S(n, du) := span{1,u2,... un}, then the generalized derivatives Lj,do:
Dj ... D1Do, where

Djf(x):= lim f(x+6)-f(x) j 1, (2)
6--o+ aj+1 (X + 6) -j+l W

are linear mappings S(n, da) -+ S(n-j, dg(j). For a partition A {i.k+l of
an interval [a, b], and a given multiplicity vector m = (nl,... , nk)T, (0 < ni <
n), we shall denote by {tl ... t 2 ,+k} [11] an extended partition in the usual way
(see Fig. 1 and Fig. 2):

tl = =tn = Xo,

tn+k+1 = t2n+k = Xkh-,

tn+l <_''<tn+k = XI),...,7Xl,...,iXk, ... ,iXk.

S(n, m, du, A) is the spline space spanned by functions being piecewise in
S(n, da) [11]. Chebyshev B-splines in S(n, m, der, A) have compact support
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[ti, ti+n], and we shall henceforth assume that these are unique such splines
such that

n+K T j x = 1; 0.. n - 2, (3)
i=1

where K : = ni. We aim to show that for lower order Chebyshev splines,
one can express Chebyshev B-splines as linear combinations with positive
coefficients of B-splines with multiple knots. Hopefully, these can be computed
efficiently by some interpolating formula or otherwise. In Section 3 we give
some examples of how the theory can be used to construct Chebyshev B-
splines in some known polynomial cases, like weighted splines and q-splines,
but also in the non-trivial case of some other useful Chebyshev splines. To
achieve this, we need some technical results. One is the derivative formula,
stating that for x E [a, b], and a multiplicity vector m whose components
satisfy ni < n - 1 (i = 1,... k), the derivative of a T-spline is

T -- Tn-1 1 x

Li,daTida(X) -- "Td-.'+1 (4))ldr1)
CL- 1 (i) Cn-1(i + 1)W (4)

where
C _j (i) T -11 d`2. (5)

For continuous a, the proof is similar to that in [9]; a somewhat longer proof
involving only determinant identities exists, and relies only on the fundamental
theorem of integral calculus [11]:

b
f(b) - f(a) = Ll,daf(t)da2(t), (6)

which holds under very weak hypothesis on the measures.
In certain cases one may construct splines defined on triplets of knots

(Lagrangian splines) by a generalized Taylor formula. We give a variant of the
Taylor formula, amenable to generalization, that can be useful for lower order
Chebyshev systems:

Lemma 1. Iff and dg = (do2 ,... ,da 5 )T are such that Lif :-- Li,daf exist
and are measurable with respect to dai+1 ,(i = 1, ... 4) on [a, b], then

f(x) =f(a) + Lif(a) d0r2(s2) + L2f(a) du 2(s2) j dOa3(s3)

"- L3f(a) d•d2 (s 2 ) do 3 (s 3 ) j8 d0 4 (s 4 )

"+ do 2(S2) f2da3(s3) J3 dO-4(s4) J8 L4f(s5)dOus(s 5).
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Proof. The hypothesis and (6) enable us to use standard arguments of math-
ematical analysis in developing a Taylor series expansion

f(x) =f(a) + (Llf(S2) - Llf(a) + Lf (a))dU2(s 2)

= f(a) + Lif(a) fd 2 (s 2) + etc. ri

Lemma 1 is in fact a way of writing a Taylor expansion for L-splines,
see [13], pp. 425-426.

§2. A Knot Insertion Algorithm

We shall henceforth assume that Chebyshev B-splines TI3,d01) can be evaluated

at the knots in a numericaly stable way. This is a sound hypothesis, since
by (4),

Ti~da(X) _~ ~ r1 dl' T? 1O
C2(i) /TS2,,(1)a C 2(i + 1) Ti +ildOr() "

If we suppose that the multiplicity vector m is such that V3 dG E C[a, b] (that
is, ni < 2), then we have

d(ti+) = C2(i) i t, do

and
r t +2 1d r [ tiJ'3 T? 1 O 2Tzdr(t+2 Ti~l'dar(I)°' - 2i ) i1dr(1)°2

Thda(ti+2) 1 C2 (i + 1) + C 2 (i+ 1) Jt+l (' 2

Since the construction of two-interval supported "linear" splines is easy, sta-
ble evaluation of Tdu(ti+l), TVdG(ti+2) amounts to finding an integration
formula, preferably of Gaussian type. The important thing is that in this
case we do not have any dangerous subtractions potentially leading to large
floating point errors, as in (4).

Theorem 2. Let Tj3,dG(,) E S(3,m, da(1),A) be a Chebyshev 3 rd order B-

spline associated with the multiplicity vector m = (1,... 1)T, and let us as-
sume that T7 3,dO.(1) E S(3, fn, d,()), A) are Chebyshev B-splines associated

with the multiplicity vector in = (2,... 2 )T (Fig. 1) on the same partition. If
{tl,... tk+ 6} and {tl,... t 2k+6} are the associated extended partitions, and r
an index such that tj =tr< +,, then for j = 1,... k + 3,

T 3 -T 3+ d)(tj+l)3 + 3 
+T )T 3j,d4a( -=~~ ~ r, T+1,da(,) + T•,d(1) (tJ+2)Tr+2,dar(')
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XO X1 X2 X3 X4 X5 X6
1 1 I I I I

ti {i t4 t5 t6 t7 t8 t9 i14

t2 2  i4 46  i ilO tl0o1 5

t3 T3  45  i 7  i9 ill i13 tilt 1 6

Fig. 1. Double knots.

Proof: Let T3 = T 3 daG(). Since T3 (tj) = T3(tj+3)- 0 and the same
holds for the first generalized derivatives, we conclude that two out of three
coefficients representing TV on each interval of its support are zero. For

x E (tj,tj+l) we have that T3(tj+l) - 65(r)T,3(tj+l). Since (3) applied to

S(3, in, da(1), A) implies that T,3(tj+l) = 1, it remains to show that the mid-
dle coefficient equals 1. For x E (tj, tj+l), property (3) again leads to

T3L(x) + T](x) + Tj=+l(x) = 1.

We expand Tj3, i E {j - 1,j,j + 1} in S(3, in, da(1),A), and rearrange the
terms to obtain

T3'(x)[Tl(tj+l) + T(tj+1 )] + 65(r + 1) -3+l(X)

+ T3+2 (x)[T (tj+2) + T+ 2(tj+2 )] =1.

The expressions in square brackets are equal to 1 by (3) applied at the knots
tj+l,tj+2. But the partition of unity property must also hold for Chebyshev
B-splines in S(3, fa, da(l), A), and, since the expansion of unity in this space
must be unique, we have b53(r + 1) = 1. 0

The more important "cubic" version follows from Theorem 2 and the
derivative formula (4):

Theorem 3. Let TV dOd e S(4, m, da, A), T.,4d E S(4, th, du, A), and let m, fa
be multiplicity vectors as in Theorem 2. Then there exist positive 6J4(i), de-
pendent on da3 , such that TdG 4 = where r = r satisfies tj-~d z=r 631(0)T2La, hr jstslst

tri < irj+l. If the the extended partition is {tl,... tk+s}, and {ti, ... !2k+8}

is the extended partition with double interior knots, then 64(i), i = r,... r + 3
are explicitly determined by

V,(d-T3(1 (tj+l)C(r)

STJ,d(1)(tj+l)C(r) + Q(r + 1) + ,da(!) (tj+2)0(r + 2)'

rTda(1) (tj+l)0(r) + 4(r + 3)
TVda(,) (tj+l)C(r) + C(r + 1) + Tda(M(tj+2)0(r + 2)'

r+2 T?,da )(tj+ 2 )C(r + 2) + C(r + 3) + T3.l,dO(1)(t 3 +3 )C(r + 4)'

r+ld gc, (tj+3)C(r + 4)
t4 (r + 3) = V32) + C(r ± 3) '.,+l,dta(1) (tj+2)C(r +t 2)+ r + 3) 1,dta(l) (tj+3)C(r + 4)'
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where as in (5),
q(i)= U 7

= J g,dGr(1)~2 7
support

Proof: We expand Tj4,a in terms of less smooth T4

r+6

T7 4dG(X) Z 4 -
i=r-2

and apply (4) to obtain

T73dad(x) _ T3+l,da(X) 64 (i) -- 4(i _ 1))

C3 (j) C3(j±1) + p c3(i)

We may then use Theorem 2 to expand T3dg, and write a linear system

for 64, which has the above explicit solution. Details are omitted since the
construction very much resembles the construction of v-splines in [10]. E]

It is not difficult to prove that 51 are discrete Chebyshev splines, that is,
they form a partition of unity, i.e., -,i 654(j) = 1 [10]; this also holds for general
order splines.

We also note that coalescence of the knots yields an expression for a
complete "Chebyshev cubic" spline on triple partitions.

§3. Examples

We investigate how much of the above theory can be applied to some known
spaces of Chebyshev splines, and what special properties must be used to
obtain the stability of the algorithm for the evaluation of Chebyshev B-splines.

Remark 4. Minimizing elastic energy of an inhomogenuous rod leads to a
minimization problem for the functional

(E(s)I(s)u" (8))2 ds -* min,

where E is Young's modulus of elasticity, and I is the moment of inertia of its
cross section. We think of the rod as being made of pieces of different material
(E piecewise constant), or different cross section (I is piecewise constant) on
intervals [xi, xi+l) that partition [a, b). In either case, the Euler equation is
L4,daU := (wU")" = 0, where du := (dx, da, dx)T ), and da is the measure
generated by the piecewise constant density w := 1/EI, wl[x,,x,+l] =: wi.

In CAGD such splines are known as v-splines, introduced by Foley [2].
It follows from the variational formulation that v-splines possess continuous
derivatives, and that jumps in second derivatives must be continuous:

wi+iu"(xi) - wiu"(Xi) = 0. (8)
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If the breakpoints for w are points of the partition A, it is not difficult to see (2)
that (8) is equivalent to the continuity of the second generalized derivatives
L2,do across the knots. We may evaluate T4 dG by scalar products of positive,
known quantities; for instance it follows (with the knots enumerated as in
Theorem'3), that

4 723(4) -4 + -y3(4) + y3(5) 34 + -3(7) + -3(8) -i34B + 2M &4,

where
3(4) = , (t4 - t 2 ), -y2(5) = t4 - t3,

do 3 ,,l,2 , 4 )

y23(7) = t5 - t4 , 2y•(8) = do-(t4, t 6)

-y3 -= 1y((i) for 1 = 2,3.

One should note that !4 are ordinary polynomial splines (by raising the mul-
tiplicity of the knots we avoid the second derivative condition), and thus are
readily calculated by the de Boor-Cox recurrence. This is an example of a
Chebyshev system which is not an ECC-system, since do is generated by a
non-continuous density.

Remark 5. If do, in Remark 4 is a Lebesgue measure, the standard knot
insertion formula for a "homogenuous rod" i.e., cubic splines appears:

Ba 4 t3 - t2B-4 Tt4 - t2 +4 t6 - t4 -4 t6 -t4  4
t5 t2 5 -t2  t6-t3  t6 -t3

Remark 6. In the last polynomial example, we consider the q-splines intro-
duced by Kulkarni and Laurent [3], which are piecewisely linear combinations
of the functions in the canonical system {1, u2 , U 3 , U4}:

u 2(x) = dt 2 ,

u 3(x) = dt2 q(t 3) dt 3 ,

" t2 ft 3
U4(X) = Za dt 2 ]a q(t 3)dt3 Ia dt 4 ,

where q is piecewise linear:

qi+1 - qj (X ti)

hi :=t+ - ti, and qi > 0. This may be thought of as an elastic rod with
elastic properties changing in a reciprocally linear way; the more physically
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X0 X1 X2 X3 X4 X5 X6
SI I I I I I

tli i t5 t 6  t 7  t8  t9  tl0 i20

t2 t2  t5 t8 1  t14  t1 7  t11 t 21

t3 i 3  i6 i9  i85  t12 '2

t4 t4  t'7  t0 t13  t16 tl9 t1 3 t2 3

Fig. 2. Triple knots.

sound model in which material properties are changing linearly does not lead
to "Chebyshev polynomial splines" [7], but involves logarithmic weights, and
does not seem to be very useful.

Some parts of the construction can be made more explicit, i.e., (7) can
be integrated to obtain

hi- 2q + 2 q+1 1
C3(r - 1) =4- +

4 2qi qj+1 qj + 2q~i J
[ ih qi+2hi+l q h t i÷ h~ t q + •i 2

C(13() =! + hih + h j+h +1 + q~h~
4 Lqi + 2qi+l 2qj+j + 'h±2

We can stably calculate "parabolic" B-splines required by Theorem 2 in two
important points via

Ti3(ti+) =- hi(qj + 2qi+i) 73 (ti+2 ) hi+ 2 (2qi+ 2 + qi+3)
6C 2 (i) 6C 2 (i + 1)

where

C 2(i) = B2(t)q(t) dt= [(qi + 2qi+l)hi + (2 qi+i + qi+ 2 )hi+l].

One can in fact express t'
4 dG in terms of B-splines on a triple net (Bernstein

polynomials). The enumeration of the knots is as in Fig. 2, with quadruple
knots at both ends and triple knots ii in the interior. If s is an index such
that t, = i,- 2 = it- 1 = t8 < i,+l, then

T.4 1 2qz hi j35  1 (hi + h+l

- 3 (r -1) 2q-+q-+l 4 -2 + 4

qi+2 hi+l )b 5  + 1 qi+2 hi+j h5+ 2qi+,+qi+2 4 + 0 3(r) 2 qi+l + qi+2 4 s,

and an analogous result holds for t,4.

Remark 7. Let us now see how the theory may be applied to the "real"

Chebyshev case by considering tension splines with uniform tension parameter
that are piecewise in the null-space of the differential operator D 2 (D 2

- p2),
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where p > 0 is the tension parameter; see [4] for some more recent references.
We may factor the differential operator as

D(D + ptanhpx)(D - ptanhpx)D = ( 1 D)(cosh 2 pxD)( 1pD)D,
cosh px cosh px

and identify the measure vector du = (ds2 , coshps 3ds 3, OS_'_ý7,)T. Other

measure vectors may be used, but this has the advantage that Ll,do =_ D
maps the tension spline space to the space of hyperbolic splines, where nice
recurrencies exist. To apply Theorem 3, we need B-splines in the reduced
system [14]:

sinh
2 

(p/2)(x-tj) x E
sinh (p/2)(tj+2-tj) sinh (p/2)(tj+l -tj )'

sinh' (p12)(x-tj) sinh2 (p/2)(tj+2-X) +•

Td( sinh (p/2)(tj+2-t) sinh (p/2)(tj+ 2 -tj+1)j~ d~ r( ) = C s in h 2 (p / 2 ) (t j + 3 - X ) s in h 2 (p / 2 ) ( x - t j+ l x ) x E ( t l , j 2)

sinh (p/2)(tj+3-tj+,) sinh (p/2)(tj+2 -tj+l)' XE (tj+l, tj+2),

sinh2 (p/2)(tj+ 3 -x) T x (tj+2, tj+3),
sinh (p/2)(tj+3 -tj+l) sinh (p/2)(tj+3-t,+2) (

where the normalisation constant C : = cosh P2(tj+2 - tj+l) ensures the parti-

tion of unity (3). The problem of how to calculate TVda remains. If we use
techniques like in Remark 6 to express tension splines on triple nets, we finally
arrive at the numericaly nasty formula for a T-spline with support [ti, ti+1],
(h : = i - ti), that is 7 ,d sjn---h r is given by

(sinhph - ph) (cosh p(x - ti) - 1) - (coshph - 1)(sinhp(x - ti) - p(x - ti))
2(sinh ph - ph) (ph/2 cosh ph/2 - sinh ph/2)

The above formula is a special case of the integrated version of the derivative
formula (4). Taylor expansions may be used to calculate the above expression
for a small p (approx. p < 0.5 in double precision, IEEE standard), and also
an asymptotic formula for the ultimate almost linear spline, ideas similar to
the ones used by Rentrop [8]. In the middle range it is best to utilize the gener-
alized Taylor expansion from Lemma 1 in the vicinity of the inflexion point of

which is defined as the solution of the equation L3,d& 
4d0 .(ainflex) = 0.

On the standard interval [0, 1], one obtains ainflex. = • log exp (p)-p-1 . both
limits never approach boundaries.

For h = 1 we can thus obtain an absolutely stable formula in the range
0.5 < p < 700 with very few arithmetic operations. Translation invariance
of splines in tension enables calculation on any interval. We also note that
in order to have a complete algorithm, one must have a kind of Gaussian
integration formula in closed form to calculate the normalisation constants (5).
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